CEPS  24.01
Cardiac ElectroPhysiology Simulator
Units for cardiac applications

In the currently implemented cardiac models, we solve for $v$ the following equation (or a variant)

\[ \sisetup{math-micro=\text{µ},text-micro=µ} A_\mathrm{m}(C_\mathrm{m}\partial_t v + I_\mathrm{ion}) = \nabla\cdot(\sigma\nabla v). \]

The following chart tells the unit of each variable involved in the equation.

Variable - Dimension Description CEPS Units
Time $\mathrm{ms}$
Length $\mathrm{cm}$
$v$ Transmembrane voltage $\mathrm{mV}$
$A_\mathrm{m}$ Membrane surface to volume ratio $\si{\per\centi\metre}$
$C_\mathrm{m}$ Membrane surfacic capacitance $\si{\micro\farad\per\centi\metre\squared}$
$I_\mathrm{ion}$ Ionic current $\si{\micro\ampere\per\centi\metre\squared}$
$\sigma$ Electric conductivity $\si{\milli\siemens\per\centi\metre}$

However, ionic models have often a different unit, and are sometimes expressed for $I_\mathrm{ion}/C_\mathrm{m}$.

Ionic Model Computed variable Unit Indicated value of $C_\mathrm{m}$
Beeler Reuter 1977 $I_\mathrm{ion}$ $\si{\micro\ampere\per\centi\metre\squared}$ $\SI{0.01}{\micro\farad\per\milli\metre\squared}$
TenTuscher Panfilov 2006 $I_\mathrm{ion}/C_\mathrm{m}$ $\si{\milli\volt\per\milli\second}$ $\SI{0.185}{\micro\farad}$
Courtemanche Ramirez Nattel 1998 $I_\mathrm{ion}$ $\si{\micro\ampere}$ $\SI{100}{\pico\farad}$
Mitchell Schaeffer 2003 $I_\mathrm{ion}/(C_\mathrm{m}\Delta V)$ $\si{\per\milli\second}$ -

The conversion from CEPS units to ionic model units is automatic. However, for models that require to change from absolute to surfacic currents, we considered a myocyte to have a cylinder shape of radius 10 µm and length 100 µm.